Jomelli, V, Lane, TP, Favier, V, Masson-Delmotte, V, Swingedouw, D, Rinterknecht, V, Schimmelpfennig, I, Schimmelpfennig, D, Verfaillie, D, Adamson, K, Leanni, L, Mokadem, F and ASTER Team,

Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic

http://researchonline.ljmu.ac.uk/4202/

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Jomelli, V, Lane, TP, Favier, V, Masson-Delmotte, V, Swingedouw, D, Rinterknecht, V, Schimmelpfennig, I, Schimmelpfennig, D, Verfaillie, D, Adamson, K, Leanni, L, Mokadem, F and ASTER Team, (2016) Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic.

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/
Supplementary Online Material

Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic

Vincent Jomelli*, Timothy Lane, Vincent Favier, Valerie Masson-Delmotte, Didier Swingedouw, Vincent Rinterknecht, Irene Schimmelpfennig, Daniel Brunstein, Deborah Verfaillie, Kathryn Adamson, Laëtitia Leanni, Fatima Mokadem, ASTER Team

The following pages include:

Figure S1

The list of extended tables 1-5

References
Extended Data Figure 1. Summed probability plots the 36Cl surface exposure ages for each moraine based on the “Schimmelpfennig” production rate set (Methods). Red gaussians are the individual boulder ages with 1σ analytical uncertainty only. Dashed vertical lines are the arithmetic means. Grey bands represent the 1σ errors including standard deviation, analytical and production rate errors.
Table S1: Sample locations and sample-specific information.

Table S2: Chemical compositions of two bulk rock samples before acid etching. Analysis performed at the SARM-CRPG (Nancy, France) by ICP-OES (major elements), ICP-MS (trace element), atomic absorption (Li), colorimetry (B) and spectrophotometry (Cl). The

Table S3: Concentrations of the 36Cl target elements, determined in splits taken from the samples after the acid etching to remove ~20% of the samples. Analysis performed at the SARM-CRPG (Nancy, France) by ICP-OES. Concentrations of the target element Cl

Table S4: 36Cl dating results, including measured 35Cl/37Cl and 36Cl/35Cl ratios, inferred 36Cl and Cl concentrations, individual sample ages, and landform mean ages. Data for the two procedural blanks (DIS-Bk_01 and DIS-Bk_02) are also included. DIS-Bk_

Table S5: Climate models description

Supplementary References

